Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.164
Filtrar
1.
J Infect Chemother ; 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38588797

RESUMO

INTRODUCTION: Antimicrobial susceptibility patterns of bacterial pathogens isolated from patients with complicated urinary tract infections were analyzed using the national surveillance data, comprising 793 bacterial strains from eight clinically relevant species. MATERIALS AND METHODS: Data were collected for the fourth national surveillance project from July 2020 to December 2021 by the Japanese Society of Chemotherapy, the Japanese Association for Infectious Disease, and the Japanese Society of Clinical Microbiology. Surveillance was supervised with the cooperation of 43 medical institutions throughout Japan. RESULTS: Fluoroquinolone required a minimum inhibitory concentration (MIC) of 2-64 mg/L to inhibit the 330 tested Escherichia coli strains. The proportion of levofloxacin-resistant E. coli strains increased from 28.6% in 2008 to 29.6% in 2011, 38.5% in 2015, and 44.5% in 2021. The proportion of levofloxacin-resistant strains of Pseudomonas aeruginosa also increased from previous survey results, showing a continuing downward trend. Conversely, the proportion of levofloxacin-resistant strains of Enterococcus faecalis decreased relative to previous reports. Neither multidrug-resistant P. aeruginosa nor carbapenem-resistant Enterobacteriaceae were detected. For methicillin-resistant Staphylococcus aureus (MRSA), the proportion of vancomycin-susceptible strains (MIC of 2 µg/mL) decreased from 14.7% to 7.7%. DISCUSSION: Bacterial strains that produced extended-spectrum ß-lactamase included E. coli (82/330 strains, 24.8%), Klebsiella pneumoniae (11/68 strains, 16.2%), and Proteus mirabilis (4/26 strains, 15.4%). As compared to previous surveillance reports, these strains showed an increase in proportion over the years.

2.
bioRxiv ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38617265

RESUMO

The rational design of the antibiotic treatment of bacterial infections employs these drugs to reach concentrations that exceed the minimum needed to prevent the replication of the target bacteria. However, within a treated patient, spatial and physiological heterogeneity promotes antibiotic gradients such that the concentration of antibiotics at specific sites is below the minimum needed to inhibit bacterial growth. Here, we investigate the effects of sub-inhibitory antibiotic concentrations on three parameters central to bacterial infection and the success of antibiotic treatment, using in vitro experiments with Staphylococcus aureus and mathematical-computer simulation models. Our results, using drugs of six different classes, demonstrate that exposure to sub-inhibitory antibiotic concentrations not only alters the dynamics of bacterial growth but also increases the mutation rate to antibiotic resistance and decreases the rate of production of persister cells thereby reducing the persistence level. Understanding this trade-off between mutation rates and persistence levels resulting from sub-inhibitory antibiotic exposure is crucial for optimizing, and mitigating the failure of, antibiotic therapy.

3.
Front Microbiol ; 15: 1344914, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585695

RESUMO

Although the incidence of Mycobacterium abscessus infection has recently increased significantly, treatment is difficult because this bacterium is resistant to most anti-tuberculosis drugs. In particular, M. abscessus is often resistant to available macrolide antibiotics, so therapeutic options are extremely limited. Hence, there is a pressing demand to create effective drugs or therapeutic regimens for M. abscessus infections. The aim of the investigation was to assess the capability of isoegomaketone (iEMK) as a therapeutic option for treating M. abscessus infections. We determined the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of iEMK for both reference and clinically isolated M. abscessus strains. In addition to time-kill and biofilm formation assays, we evaluated iEMK's capability to inhibit M. abscessus growth in macrophages using an intracellular colony counting assay. iEMK inhibited the growth of reference and clinically isolated M. abscessus strains in macrophages and demonstrated effectiveness at lower concentrations against macrophage-infected M. abscessus than when used to treat the bacteria directly. Importantly, iEMK also exhibited anti-biofilm properties and the potential to mitigate macrolide-inducible resistance, underscoring its promise as a standalone or adjunctive therapeutic agent. Overall, our results suggest that further development of iEMK as a clinical drug candidate is promising for inhibiting M. abscessus growth, especially considering its dual action against both planktonic bacteria and biofilms.

4.
Vet World ; 17(2): 407-412, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38595656

RESUMO

Background and Aim: Brucella melitensis is responsible for brucellosis, a highly contagious, life-threatening disease that has a high impact in low- and middle-income countries. This study aimed to compare silica nanoparticles (SiO-NPs) loaded with ciprofloxacin with silver nanoparticles (AgNPs) loaded with ciprofloxacin to evaluate the possible replacement of silver by silica to enhance biological activity and reduce cytotoxicity. Materials and Methods: SiO-NPs and AgNPs loaded with ciprofloxacin were characterized using ultraviolet spectroscopy, scanning electron microscopy, and dynamic light scattering microscopy for size demonstration and loading efficiency. Both nanoparticles were treated with B. melitensis Rev 1 to evaluate their biological activity. Nanoparticle toxicity was also evaluated using cytotoxicity and hemolysis assays. Results: SiO-NP was found to have a smaller size (80 nm) and higher loading efficiency with polydispersity index and zeta potential of 0.43 and 30.7 mV, respectively, compared to Ag-NP (180 nm and 0.62 and 28.3 mV, respectively). SiO-NP was potent with a minimum inhibitory concentration of 0.043 µg/mL compared to Ag-NP (0.049 µg/mL), with a lower cytotoxicity and hemolysis activity. Conclusion: SiO-NP, as a drug delivery system for ciprofloxacin, has better antimicrobial activity against B. melitensis with lower cytotoxicity and hemolysis activity. These results can be attributed to the enhanced physical characterization and better loading efficiency when compared to Ag-NP.

5.
J Nepal Health Res Counc ; 21(4): 616-622, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38616592

RESUMO

BACKGROUND: Staphylococcus aureus (S.aureus) is an emerging antibiotic resistant bacterium responsible for various infections in human. Resistance to methicillin and vancomycin are of prime concern in S. aureus. The study aims to determine the minimum inhibitory concentration (MIC) of Vancomycin and evaluate the existence of mecA and vanA genes, associated with antibiotic resistance. METHODS: Clinical specimens from three Kathmandu hospitals were processed and S. aureus was identified using conventional microbiological procedures. MRSA was phenotypically identified with cefoxitin (30µg) disc diffusion, while vancomycin susceptibility was assessed using the Ezy MICTM stripes. The mecA and vanA genes were detected by polymerase chain reaction (PCR). RESULTS: Out of 266 S. aureus samples from various clinical specimen subjected for analysis, 77 (28.9%) were found methicillin-resistant (MRSA) and 10 (3.8%) were observed vancomycin-resistant (VRSA). Vancomycin resistant isolates showed a significant correlation between resistance to ampicillin, chloramphenicol, and cefoxitin. The mecA gene was found in 39 of the MRSA isolates, having 50.64% of MRSA cases, while the vanA gene was detected in 4 of the VRSA cases, constituting 40% of VRSA occurrences. CONCLUSIONS: The strains with higher vancomycin minimum inhibitory concentration values (≥ 1.5 µg/ml) displayed increased resistance rates to various antibiotics compared to strains with lower minimum inhibitory concentration values (< 1.5 µg/ml). The presence of vanA genes was strongly associated (100%) with vancomycin resistance, while the 10.3% mecA gene was identified from MRSA having resistance towards vancomycin also.


Assuntos
Infecções Estafilocócicas , Vancomicina , Humanos , Vancomicina/farmacologia , Staphylococcus aureus/genética , Cefoxitina/farmacologia , Nepal , Infecções Estafilocócicas/tratamento farmacológico , Antibacterianos/farmacologia
6.
Front Microbiol ; 15: 1348063, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38476938

RESUMO

Introduction: This study is the final part of a two-part series that delves into the molecular mechanisms driving adaptive laboratory evolution (ALE) of Salmonella enterica in acid stress. The phenotypic and transcriptomic alterations in the acid-evolved lineages (EL) of Salmonella enterica serovar Enteritidis after 70 days of acid stress exposure were analyzed. Materials and methods: The stability of phenotypic changes observed after 70 days in acetic acid was explored after stress removal using a newly developed evolutionary lineage EL5. Additionally, the impact of short-term acid stress on the previously adapted lineage EL4 was also examined. Results: The results indicate that the elevated antibiotic minimum inhibitory concentration (MIC) observed after exposure to acetic acid for 70 days was lost when acid stress was removed. This phenomenon was observed against human antibiotics such as meropenem, ciprofloxacin, gentamicin, and streptomycin. The MIC of meropenem in EL4 on day 70 was 0.094 mM, which dropped to 0.032 mM when removed from acetic acid stress after day 70. However, after stress reintroduction, the MIC swiftly elevated, and within 4 days, it returned to 0.094 mM. After 20 more days of adaptation in acetic acid, the meropenem MIC increased to 0.125 mM. The other human antibiotics that were tested exhibited a similar trend. The MIC of acetic acid in EL4 on day 70 was observed to be 35 mM, which remained constant even after the removal of acetic acid stress. Readaptation of EL4 in acetic acid for 20 more days caused the acetic acid MIC to increase to 37 mM. Bacterial whole genome sequencing of EL5 revealed base substitutions in several genes involved in pathogenesis, such as the phoQ and wzc genes. Transcriptomic analysis of EL5 revealed upregulation of virulence, drug resistance, toxin-antitoxin, and iron metabolism genes. Unstable Salmonella small colony variants (SSCV) of S. Enteritidis were also observed in EL5 as compared to the wild-type unevolved S. Enteritidis. Discussion: This study presents a comprehensive understanding of the evolution of the phenotypic, genomic, and transcriptomic changes in S. Enteritidis due to prolonged acid exposure through ALE.

7.
Animals (Basel) ; 14(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38473161

RESUMO

Antimicrobial resistance is becoming a problem of concern in the veterinary field, necessitating the use of effective topical treatments to aid the healing of wounds. Honey has been used for thousands of years for its medicinal properties, but in recent years medical-grade Manuka honey has been used to treat infected wounds. The goal of this study was to determine the relative susceptibility of four common equine wound pathogens to ten different types of antimicrobial agents based on the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). The pathogens studied include ATCC lab-acclimated Pseudomonas aeruginosa, Escherichia coli, and methicillin-resistant Staphylococcus aureus and one from an equine sample submitted to the Colorado State Veterinary Diagnostic Laboratory (Streptococcus equi ssp. zooepidemicus (Streptococcus zooepidemicus)). An additional goal of the study was to describe the comparison of bactericidal activity of medical-grade Manuka honey, local honey, and commercial, food-grade honey to other commonly used wound dressings (20% hypertonic saline, silver sulfadiazine cream, PHMB gauze, and PHMB foam). The objective is to provide veterinary practitioners with comparative data on the use of a variety of antimicrobial dressings for inhibiting the growth of common wound bacteria. MIC and MBC for Manuka, store, and local honeys were comparable to those of sterile gauze, sugar, and hypertonic saline. Across bacterial species, local honey proved to have more bactericidal activity when compared to Manuka honey and commercial, food-grade honey. The MIC and MBC for PHMB gauze and foam was consistently at a higher dilution compared to the other antimicrobials. The majority of antimicrobials exhibited stronger inhibitory and bactericidal activity against a Streptococcus zooepidemicus isolate obtained from a wound compared to other bacteria that were ATCC lab-acclimated. Additional research for in vivo applications needs to be done to see whether differences exist in effective wound management.

8.
Molecules ; 29(5)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38474673

RESUMO

1,3,6-Trigalloylglucose is a natural compound that can be extracted from the aqueous extracts of ripe fruit of Terminalia chebula Retz, commonly known as "Haritaki". The potential anti-Helicobacter pylori (HP) activity of this compound has not been extensively studied or confirmed in scientific research. This compound was isolated using a semi-preparative liquid chromatography (LC) system and identified through Ultra-high-performance liquid chromatography-MS/MS (UPLC-MS/MS) and Nuclear Magnetic Resonance (NMR). Its role was evaluated using Minimum inhibitory concentration (MIC) assay and minimum bactericidal concentration (MBC) assay, scanning electron microscope (SEM), inhibiting kinetics curves, urea fast test, Cell Counting Kit-8 (CCK-8) assay, Western blot, and Griess Reagent System. Results showed that this compound effectively inhibits the growth of HP strain ATCC 700392, damages the HP structure, and suppresses the Cytotoxin-associated gene A (Cag A) protein, a crucial factor in HP infection. Importantly, it exhibits selective antimicrobial activity without impacting normal epithelial cells GES-1. In vitro studies have revealed that 1,3,6-Trigalloylglucose acts as an anti-adhesive agent, disrupting the adhesion of HP to host cells, a critical step in HP infection. These findings underscore the potential of 1,3,6-Trigalloylglucose as a targeted therapeutic agent against HP infections.


Assuntos
Helicobacter pylori , Terminalia , Extratos Vegetais/química , Terminalia/química , Cromatografia Líquida , Espectrometria de Massas em Tandem , Água
9.
Talanta ; 272: 125831, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38428133

RESUMO

The effective management of infectious diseases and the growing concern of antibiotic resistance necessitates accurate and targeted therapies, highlighting the importance of antibiotic susceptibility testing. This study aimed to develop a real-time impedimetric biosensor for identifying and monitoring bacterial growth and antibiotic susceptibility. The biosensor employed a gold 8-channel disk-shaped microelectrode array with specific antibodies as bio-recognition elements. This setup was allowed for the analysis of bacterial samples, including Staphylococcus aureus, Bacillus cereus, and Micrococcus luteus. These microorganisms were successfully cultured and detected within 1 h of incubation even with a minimal bacterial concentration of 10 CFU/ml. Overall, the developed biosensor array exhibits promising capabilities for monitoring S. aureus, B. cereus and M. luteus, showcasing an excellent linear response ranging from 10 to 104 CFU/ml with a detection limit of 0.95, 1.22 and 1.04 CFU/mL respectively. Moreover, real-time monitoring of antibiotic susceptibility was facilitated by changes in capacitance, which dropped when bacteria were exposed to antibiotic doses higher than their minimum inhibitory concentration (MIC), indicating suppressed bacterial growth. The capacitance measurements enabled determination of half-maximal cytotoxic concentrations (CC50) values for each bacteria-antibiotic pair. As a proof-of-concept application, the developed sensor array was employed as a sensing platform for the real time detection of bacteria in milk samples, which ensured the reliability of the sensor for in-field detection of foodborne pathogens and rapid antimicrobial susceptibility tests (ASTs).


Assuntos
Técnicas Biossensoriais , Staphylococcus aureus , Reprodutibilidade dos Testes , Anticorpos/farmacologia , Antibacterianos/farmacologia , Bacillus cereus
10.
Molecules ; 29(6)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38542862

RESUMO

Antimicrobial resistance has emerged as a significant threat to public health, prompting novel combinations comprising of natural sources such as essential oil compounds with conventional antibiotics. This study aimed to determine the possible interactions between six essential oil compounds with eight antibiotics/antifungals against six pathogens (Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, Acinetobacter baumannii, Cutibacterium acnes, and Candida albicans) commonly implicated in skin infections. The minimum inhibitory concentrations (MICs) for the antibiotics and essential oil compounds were evaluated singularly and in combination using the broth microdilution assay. The fractional inhibitory concentrations (FIC) were calculated to determine the interactive profile of the combinations. The synergistic interactions (FIC ≤ 0.5) were further analysed at varying ratios and depicted on isobolograms. The toxicity of the synergistic combinations was determined using the brine shrimp lethality assay. Eight synergistic interactions were identified against the selected Gram-positive and P. aeruginosa pathogens, and the combinations also demonstrated a reduced toxicity. The combination of amoxicillin and eugenol demonstrated the lowest toxicity (LC50 = 1081 µg/mL) and the highest selectivity index (14.41) when in a 70:30 ratio. This study provides insight into the in vitro antimicrobial interactions of essential oil compounds and conventional antibiotics that can form a basis for newer therapies.


Assuntos
Anti-Infecciosos , Dermatologia , Óleos Voláteis , Antibacterianos/farmacologia , Óleos Voláteis/farmacologia , Anti-Infecciosos/farmacologia , Amoxicilina , Testes de Sensibilidade Microbiana , Sinergismo Farmacológico
11.
Indian J Med Microbiol ; 48: 100559, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38447856

RESUMO

INTRODUCTION: Colistin is the last resort treatment against resistant Gram-negative bacteria, necessitating reliable and rapid means for sensitivity testing of colistin. Automated systems like VITEK®2 are adopted to determine the minimum inhibitory concentration (MIC) due to easy usage. Broth microdilution (BMD) for colistin MIC was suggested by EUCAST and CLSI. OBJECTIVE: To compare and evaluate colistin MIC by BMD and VITEK®2 against Gram-negative organisms from the ICU in a tertiary care hospital. METHOD: Clinically significant organisms isolated from ICU patients were included. MIC was determined using BMD and VITEK®2. Very major error (VME), major error (ME), essential agreement (EA), categorical agreement (CA), positive predictive value (PPV), negative predictive value (NPV), sensitivity, and specificity were analysed. RESULT: 533 isolates were obtained from blood (435,81.60%), respiratory samples (57,10.70%), pus and exudates (20,3.80%), urine (18,3.40%), and CSF (3,0.60%). The Enterobacterales were K. pneumoniae (185,34.70%) E. coli (73,13.70%) and E. cloacae (26,4.90%) while non-fermenters were A. baumannii (209,39.20%) and P. aeruginosa (40,7.50%). The VITEK®2 sensitivity was >99%; specificity ranged from 14.28 to 52.94%. PPV was 93.81% while NPV was 93.75%. VME ranged from 47 to 100% between isolates. ME was up to 20%. The highest VME was obtained in E. coli (100%). The total EA and CA observed were 68.5% and 99.79% respectively. CONCLUSION: Automated system VITEK®2 failed to detect the resistance in 32 (60%) isolates. The obtained VME and ME values were >3%, which is unacceptable as per the standard guidelines. EA of ≥90% wasn't obtained. Sensitivity for VITEK®2 was >99%, but had low specificity (14.28%). Hence, VITEK®2 is not reliable for colistin susceptibility testing.

12.
Heliyon ; 10(5): e27327, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38495192

RESUMO

Background: Nineteen non-antibacterials were examined to show that their consumption for treatment of other diseases may inhibit Helicobacter pylori. Four antibiotics were used for comparison. Materials and methods: Agar dilution method was used to examine the susceptibility of 20 H. pylori isolates to 4 antibiotics; metronidazole (MTZ), clarithromycin (CLR), amoxicillin (AMX), tetracycline (TET) and 19 non-antibacterials; proton pump inhibitors (PPIs), H2-blockers, bismuth subsalicylate (BSS), antifungals, statins, acetaminophen (ACE), aspirin (ASA), B-vitamins (B-Vits; Vit B1, Vit B6 and Vit Bcomplex) and vitamin C (Vit C). Blood agar plates were prepared with different concentrations of drugs and spot-inoculated with bacterial suspensions. Plates were incubated at 37 °C under microaerobic conditions and examined after 3-5 days. The isolate #20 that was mucoid and resistant to 19 drugs, including MTZ and SMV was tested against combined MTZ (8 µg/mL) and SMV (100 µg/mL). Results were analyzed statistically. Results: Minimum inhibitory concentrations (MICs, µg/mL) of drugs and the frequency of susceptible H. pylori were determined as MTZ (8, 80%), CLR (2, 90%), AMX (1, 100%), TET (0.5, 70%), PPIs (8-128, 80%), H2-blockers (2000-8000, 75-80%), BSS (15, 85%), antifungals (64-256, 30-80%), statins (100-250, 35-90%), ACE (40, 75%), ASA (800, 75%), B-Vits (5000-20000, 80-100%) and Vit C (2048, 85%). Susceptibility of H. pylori isolates to 16 out of 19 non-antimicrobials (75-100%) was almost similar to those of antibiotics (70-100%) (P-value >0.05). The highest susceptibility rate (100%) belonged to Vit B1, Vit B6 and AMX. Out of 20 H. pylori isolates, 17 (85%) were susceptible to ≥13 non-antimicrobials and 3 (15%) were susceptible to < 13 (P-value <0.05). Mucoid H. pylori showed susceptibility to combination of MTZ and SMV. Conclusions: Most of non-antibacterials inhibited H. pylori isolates, similar to antibiotics but their MICs exceeded those of antibiotics and their plasma concentrations. At low plasma concentration, non-antimicrobials may act as weak antibacterials, antibiotic adjuvants and immunostimulators.

13.
Plants (Basel) ; 13(4)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38498494

RESUMO

This study aimed to assess the antimicrobial activities of plant extracts from Artemisia afra and Eucalyptus globulus when used as coatings for textiles. A pulsed ultrasound-assisted extraction method (PUAE) was employed to obtain methanolic and hexanoic extracts from both plants. Eucalyptus globulus methanol extraction exhibited the highest yield at 22.76% (±0.61%), while Artemisia afra demonstrated lower yields. Phytochemical screening identified various secondary metabolites in the extracts, including phenols, quinones, and steroids. Antimicrobial tests against Staphylococcus aureus and Escherichia coli revealed varying degrees of susceptibility, with Eucalyptus globulus hexanoic extracts showing the highest activity against Staphylococcus aureus at an average percentage growth of 18.74% (±0.26%). Minimum inhibitory concentration (MIC) values were determined for the extracts, but complete inhibition did not occur at concentrations below 500 µg/mL. The extracts exhibited varying effects on Staphylococcus aureus and Escherichia coli growth, with some extracts promoting bacterial growth. Coating textiles with Eucalyptus globulus methanolic extracts demonstrated antibacterial activity against Staphylococcus aureus with the highest zone of inhibition observed in cotton-coated samples (258.4 mm2). Polyester-coated samples exhibited smaller inhibition zones, with the lowest observed in Eucalyptus globulus methanolic extract coating (65.97 mm2). Scanning electron microscope (SEM) analysis revealed visible surface morphology changes in coated fabrics, depicting fine, cluster, lumpy, flaky, and fragment-like morphologies. Laundering effects on coated fabrics were investigated, showing a significant decrease in antimicrobial activity after washing. Fourier-transform infrared spectroscopy (FTIR) identified functional groups in the extracts associated with antimicrobial properties. The complexity of the bioactive compounds suggests potential antimicrobial efficacy, resting on factors such as geographical location, climate, and extraction methods. Notwithstanding the limitations, this study contributes valuable insights into the use of plant extracts as antimicrobial coatings for textiles.

14.
Cureus ; 16(2): e54348, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38500909

RESUMO

Background Oral candidiasis is the most prevalent oral fungal infection, and existing antifungal agents have side effects such as drug intolerance, resistance, and toxicity. Herbal essential oils are emerging as an alternative therapeutic approach for treating fungal infections. Origanum vulgare (O. vulgare), commonly known as oregano, and Syzygium aromaticum (S. aromaticum), commonly known as clove, are known to have antifungal properties and are effective against fluconazole-resistant strains. A combination of essential oils has a synergistic effect and aids in achieving effective antifungal activity at sufficiently low concentrations, which could lead to reduced side effects and resistance. Aim of the study This study aimed to formulate and develop an herbal antifungal gel containing O. vulgare and S. aromaticum and evaluate its synergistic antifungal efficacy against oral Candida albicans (C. albicans). Methodology Minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) determinations of O. vulgare and S. aromaticum essential oils were performed individually and in combination to assess the antifungal activity against C. albicans. Based on the obtained MIC and MFC of essential oils in combination, an herbal antifungal gel was formulated. Further, to determine the biocompatible nature of the gel, a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was performed. Results We found that a combination of O. vulgare and S. aromaticum essential oils showed antifungal activity at a lesser concentration, with a MIC of 0.19 µl/ml and MFC of 0.39 µl/ml when compared to their individual concentrations. Based on our results, an antifungal herbal gel comprising a concentration of 0.6 µl/ml of both essential oils was developed to achieve synergistic antifungal activity against oral C. albicans. The MTT assay of the herbal gel did not show any cytotoxicity. Conclusion The novel herbal antifungal gel containing O. vulgare and S. aromaticum is biocompatible in nature and provides an alternative therapeutic approach for treating oral candidiasis.

15.
Microbiol Spectr ; : e0420923, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517194

RESUMO

Effective policy to address the global threat of antimicrobial resistance requires robust antimicrobial susceptibility data. Traditional methods for measuring minimum inhibitory concentration (MIC) are resource intensive, subject to human error, and require considerable infrastructure. AIgarMIC streamlines and standardizes MIC measurement and is especially valuable for large-scale surveillance activities. MICs were measured using agar dilution for n = 10 antibiotics against clinical Enterobacterales isolates (n = 1,086) obtained from a large tertiary hospital microbiology laboratory. Escherichia coli (n = 827, 76%) was the most common organism. Photographs of agar plates were divided into smaller images covering one inoculation site. A labeled data set of colony images was created and used to train a convolutional neural network to classify images based on whether a bacterial colony was present (first-step model). If growth was present, a second-step model determined whether colony morphology suggested antimicrobial growth inhibition. The ability of the AI to determine MIC was then compared with standard visual determination. The first-step model classified bacterial growth as present/absent with 94.3% accuracy. The second-step model classified colonies as "inhibited" or "good growth" with 88.6% accuracy. For the determination of MIC, the rate of essential agreement was 98.9% (644/651), with a bias of -7.8%, compared with manual annotation. AIgarMIC uses artificial intelligence to automate endpoint assessments for agar dilution and potentially increases throughput without bespoke equipment. AIgarMIC reduces laboratory barriers to generating high-quality MIC data that can be used for large-scale surveillance programs. IMPORTANCE: This research uses modern artificial intelligence and machine-learning approaches to standardize and automate the interpretation of agar dilution minimum inhibitory concentration testing. Artificial intelligence is currently of significant topical interest to researchers and clinicians. In our manuscript, we demonstrate a use-case in the microbiology laboratory and present validation data for the model's performance against manual interpretation.

16.
Chem Biodivers ; 21(4): e202400026, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38372467

RESUMO

Ruta chalepensis L. is a versatile herb used in culinary arts and traditional medicine. The study aimed to determine the chemical composition of an ethanolic extract from R. chalepensis and the total phenolic and flavonoid content. Additionally, the extracts' antimicrobial and antioxidant activities were tested. The disc diffusion method and minimum inhibitory concentration (MIC) were used to test the antibacterial properties on four types of bacteria: Escherichia coli, Proteus penneri, Bacillus cereus, and Staphylococcus aureus. A colorimetric assay was used to evaluate the total phenolic and flavonoid content, and the DPPH method was used to assess the antioxidant activity. The phytochemical constituents were determined using LC-MS/MS. The results indicated that R. chalepensis ethanolic extract had 34 compounds, and the predominant compounds were quercetin (9.2 %), myricetin (8.8 %), and camphene (8.0 %). Moreover, the extract had a good level of polyphenols and flavonoids, as demonstrated by inhibiting free radicals (DPPH) (IC50 was 41.2±0.1). Also, the extract exhibited robust antimicrobial activity against P. penneri and S. aureus with an MIC of 12.5 and 25.0 µg/mL, respectively. In conclusion, the results suggest that the R. chalepensis ethanolic extract has good antioxidant and antibacterial properties that could be utilized to develop new antibacterial agents.


Assuntos
Anti-Infecciosos , Ruta , Antioxidantes/farmacologia , Antioxidantes/química , Ruta/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Staphylococcus aureus , Cromatografia Líquida , Espectrometria de Massas em Tandem , Antibacterianos/farmacologia , Antibacterianos/química , Flavonoides/farmacologia , Fenóis/farmacologia , Fenóis/análise , Etanol
17.
Prep Biochem Biotechnol ; : 1-19, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38349742

RESUMO

Terminalia bellirica (T. bellirica) (Gaertn.) Roxb. is a well-known traditional medicinal plants that show promising treatment because of fewer side effects in humans. In the present study, the total phenol, flavonoid, condensed and hydrolyzable tannins extracted and analyzed from cold macerated (CM) T. bellirica (Gaertn.) Roxb. fruit (TBF) and leaves (TBL) extract with the identification of bioactive compounds using GC-MS/MS technique. The highest amount of bioactive content was found in ethanolic extract than toluene. Current experimental data of TBF extract shows the maximum and significant biological activity like free radical scavenging activity against DPPH and FRAP assays with IC50 values of 51.07 ± 0.52 µg/ml and 63.14 ± 0.59 µg/ml respectively. However, IC50 cytotoxicity values of TBF extract on MCF-7 cells for 24 hrs was found to be 6.34 ± 0.72 µg/ml. Minimum inhibitory concentration (MIC) for infectious pathogens Escherichia coli and Bacillus cereus was >12.5 µg/ml and >100 µg/ml respectively, however, anti-inflammatory activity was demonstrated as an IC50 value of 509.1 ± 1.72 µg/ml. Cold macerated fruit extract revealed threatening inhibitory potential against the α-amylase and α-glucosidase enzymes, with IC50 of 50.98 ± 0.23 µg/ml and 46.70 ± 1.38 µg/ml respectively. Finally, the outcome of this study showed that T. bellirica (Gaertn.) Roxb. fruit extract could be an effective source of bioactives with efficient biomedical properties.

18.
Microb Pathog ; 189: 106595, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387848

RESUMO

Cymodocea serrulata mediated titanium dioxide nanoparticles (TiO2 NPs) were successfully synthesized. The XRD pattern and FTIR spectra demonstrated the crystalline structure of TiO2 NPs and the presence of phenols, flavonoids and alkaloids in the extract. Further SEM revealed that TiO2 NPs has uniform structure and spherical in shape with their size ranged from 58 to 117 nm. Antibacterial activity of TiO2 NPs against methicillin-resistant Staphylococcus aureus (MRSA) and Vibrio cholerae (V. cholerae), provided the zone of inhibition of 33.9 ± 1.7 and 36.3 ± 1.9 mm, respectively at 100 µg/mL concentration. MIC of TiO2 NPs against MRSA and V. cholerae showed 84% and 87% inhibition at 180 µg/mL and 160 µg/mL respectively. Subsequently, the sub-MIC of V. cholerae demonstrated minimal or no impact on bacterial growth at concentration of 42.5 µg/mL concentration. In addition, TiO2 NPs exhibited their ability to inhibit the biofilm forming V. cholerae which caused distinct morphological and intercellular damages analysed using CLSM and TEM. The antioxidant properties of TiO2 NPs were demonstrated through TAA and DPPH assays and exposed its scavenging activity with IC50 value of 36.42 and 68.85 µg/mL which denotes its valuable antioxidant properties with potential health benefits. Importantly, the brine shrimp based lethality experiment yielded a low cytotoxic effect with 13% mortality at 100 µg/mL. In conclusion, the multifaceted attributes of C. serrulata mediated TiO2 NPs encompassed the antibacterial, antioxidant and anti-biofilm inhibition effects with low cytotoxicity in nature were highlighted in this study and proved the bioderived TiO2 NPs could be used as a promising agent for biomedical applications.


Assuntos
Nanopartículas Metálicas , Staphylococcus aureus Resistente à Meticilina , Nanopartículas , Titânio , Antioxidantes/farmacologia , Antioxidantes/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antibacterianos/farmacologia , Antibacterianos/química , Nanopartículas/química , Biofilmes , Nanopartículas Metálicas/química
19.
J Fish Biol ; 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38387880

RESUMO

The study aims to identify antibacterial properties in unfertilized eggs of Scyliorhinus canicula and Scyliorhinus stellaris. Despite challenging marine conditions, these eggs retain their integrity for extended periods and remain unaffected by pathogens. The antibacterial activity was measured using minimum inhibitory and minimum bactericidal concentration analysis. The eggs of S. stellaris exhibited a slight inhibitory effect against Staphylococcus aureus and Listeria monocytogenes, whereas both species' eggs showed no activity against gram-negative microorganisms.

20.
Adv Healthc Mater ; : e2303475, 2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38310366

RESUMO

Deep eutectic solvents (DESs) have been intensively investigated in recent years for their antibacterial properties, with DESs that comprise organic acids (OA-DESs) showing promising antibacterial action. However a majority of the reports focused only on a limited number strains and techniques, which is not enough to determine the antibacterial potential of a substance. To bridge this gap, the antibacterial activity of classical DESs and OA-DESs is assessed on twelve Gram-negative and Gram-positive bacteria strains, with some of them exhibiting specific resistance toward antibiotics. The investigated formulations of OA-DESs comprise glycolic, malic, malonic, and oxalic acids as representatives of this group. Using a range of microbiological assays as well as physicochemical characterization methods, a major difference of the effectiveness between the two groups is demonstrated, with OA-DESs exhibiting, as expected, greater antibacterial effectiveness than classical DESs. Most interestingly, slight differences in the minimum inhibitory and bactericidal concentration values as well as time-kill kinetics profiles are observed between Gram-positive and Gram-negative strains. Transmission electron microscopy analysis reveals the effect of the treatment of the bacteria with the representatives of both groups of DESs, which allows us to better understand the possible mechanism-of-action of these novel materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA